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INTRODUCTION

Large-scale finite element analyses are commonly used in aerospace and other industries

as part of the structural design and certification process. The computational cost of these

analyses is most often dominated by the cost of solving the system of algebraic equations

associated with the finite element model. New high-performance computer systems have

become widely available, and new equation solvers (direct and iterative) have been devel-

oped (see Refs. 1-3) to exploit the vector capabilities of these high-performance computer

systems. This paper describes the use of equation solvers in structural analysis and demon-

strates the need for different types of equation solvers within a comprehensive structural

analysis software system. All of the equation solvers compared in this work are incorpo-

rated in a large-scale structural analysis software system - the Computational Structural

Mechanics (CSM) Testbed [4]. This feature is in contrast to many finite element software

systems which provide only a single equation solver. The CSM Testbed facilitates the in-

tegration of new methods into a shared software system enabling researchers to test these

new methods by solving real applications problems and immediately providing structural

analysts the benefits of improved problem-solving capabilities. A variable-band Choleski

solver, a sparse Choleski solver, and two preconditioned conjugate gradient solvers are com-

pared by solving several representative structural analysis problems. The resulting CPU

time and memory requirements demonstrate the importance of selecting an appropriate

equation solver for each problem.

FINITE ELEMENT ANALYSIS

High-performance equation solvers are a key component of solution strategies for linear

and nonlinear structural response calculations for static, dynamic, and eigenvalue problems

in finite element analysis. The semi-discrete equations of motion for time t + At may be

written as

flnt/u _ ceztMfit+_t+Cut+At + _ t+_t) =.t+_t (1)

where M is the mass matrix, C the damping matrix, fi,_t and fc_t the internal and

external force vectors, and fi, h and u the acceleration, velocity and displacement vectors.

The internal force vector is a function of the displacements at time t + At and may also

be written as

fint/ ut t+At) = Ko ut+_t + q(ut+_,t)

where K0 is the linear stiffness matrix, and q is the vector of nonlinear terms.

(2)



The time dependent equations (1) may be solved using a number of different algorithms.

One such algorithm is the Newmark implicit direct integration algorithm, given by

(3a)

fit+At = 6t + At[(1 - a)fit + afit+_,] (3b)

This algorithm may be used to solve for the acceleration and velocity vectors, fi and fi, at

time t + At using the displacements, u, at time t + At, and the solution vectors, fi, fi and

u, from the previous time step, i.e.

1 1 . 1

fit+zxt = fl(At)2(ut+at- ut)- _-_ut -(_--_ - 1)iit (4a)

O_ O_ OL

_t(ut+_t- ut) - (_ - 1)ut - (_-_ - 1)Atiitut+at -- (4b)

Substituting equations (4) into (1), the equations of motion may be written in terms of

the displacements at time t + At. That is,

fi,_t_ u _ ( 1 a )t t+atJ + fl(/_t)2M+ _--_C ut+at =

ft,_,, ( 1 1 . 1 _l)fit)+a,+M _(-_)2 ut + _-_ut + (_--_

+C _-_ut +(_ (_--_- 1)Afiit (5)

The terms on the right-hand side of equation (5) are independent of the displacement

vector at time t + At. The system of equations (5) may involve nonlinear terms through

the internal force vector flnt(Ut+At). The nonlinear system to be solved at time t + At is

represented by .....

with

-- f_,_t/u _ ( 1 a )Ft+A, = t t+at/+ fl(_,)2 M + _-_C ut+at - Ft+At

¢..t (_ 1_ 1)lit)Ft+at = "t+at + M ut + (-_

( a a a _l)Atiit)+c Th- u,+

=0 (6a)

(6b)

This nonlinear system of equations may be solved using the Newton-Raphson procedure

at time t + At. For iteration k + 1, the procedure used to solve the Iinearized system of

equations follows:
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_h A o k+l --k
Kt+At _ut+At -- --Ft+At (7a)

Uh+I k A .k+l
t+At = Ut+At + _ut+t,t (Tb)

The Jacobian, or effective tangent stiffness matrix, associated with the k th iterate, ut+At_

is given by

_ •Of in*" _ 1 a
t+a, = (-'-_U )t+At + /5(Atg M + _-_C (7c)

Once the displacement vector at time t + At is obtained, the velocity and acceleration

vectors at time t + At may be readily obtained using equations (4).

--k

For a nonlinear transient dynamic response, the effective tangent stiffness matrix, Kt+_t ,

must be factored repeatedly. The number of factorizations may be reduced if a modified

Newton-Raphson procedure is used. For a linear transient dynamic response, the left-hand-

side of equation (5) only involves matrices of constant coefficients (e.g., K0, M, C). Only

one factorization is required if the time step size At is held constant. As such, the transient

response is obtained by repeated back-substitutions and evaluations of the right-hand-side

vector.

For static analysis problems, the inertia and damping terms are neglected in equation(5),

and static equilibrium corresponds to the balance of internal and external forces. For a

linear static response, the internal force vector is just the product of the linear stiffness

matrix K0 and the displacement vector u, and only a single factorlzation is required. For

a nonlinear static response, a Newton-Raphson procedure (like equations (7)) is used and

the tangent stiffness matrix (KT), given by

(Ofi'_t_ t (Oq_ k
\ / t+At

(8)

may need to be factored repeatedly.

For structural eigenvalue problems (buckling or vibration analyses), a generalized eigen-

value problem of the form

Axi -- )_iBxi _- 0 (9)

must be solved. In linear vibration analyses, the matrices A and B correspond to the linear

stiffness matrix K0 and the mass matrix M, respectively, ,_i is the ith vibration frequency

squared, and xi is the corresponding ith vibration mode shape. This generalized eigenvalue

problem is often transformed to a standard eigenvalue problem of the form

axi - _iXi = 0 (9)

where A = L-1AL -2' using the Cholesky factors of B = LL T or of a shifted matrix of
the form A - aB = LL T.



FEATURES OF HIGH-PERFORMANCE COMPUTERS

Modern high-performance vector computers, such as the Convex C220, the CRAY-2, and

the CRAY Y-MP, have from two to eight central processing units (CPU's). Each CPU has

multiple vector arithmetic and logic functional units which access very large main memories

through high-speed vector registers. The computation rate, commonly measured in units

known as MFLOPS (millions of floating point operations per second), is maximum when

both addition and multiplication vector functional units are operating simultaneously, thus

producing two results every machine cycle. The actual computation rate achieved is often

much lower than this theoretical peak due to several factors, the most important being the

time required for memory access. Some delay is always incurred if the operands for a vector

addition or multiplication must be transferred from main memory to the vector registers. In

general, the rate of this transfer is maximum when array elements are stored contiguously

in main memory. Once elements are in the vector registers they can be accessed at the

maximum computation rate. Another factor which affects the computation rate is the type

of operations required to carry out an algorithm. For example, vector SAXPY operations

(scalar × vector+vector) are efficient on vector computers since they contain both addition

and multiplication instructions which can be carried out nearly simultaneously. However,

inner product instructions are somewhat less efficient since they require a summation of

many vector elements into a single scalar value. The challenge to the software developer

is to design algorithms which minimize the memory access delays while utilizing the full

computing power of multiple vector functional units.

In addition to maximizing the vectorization capabilities on a single CPU, parallel process-

ing is possible on multiple processor computers. Parallel processing in combination with

highly vectorized algorithms can lead to impressive performance rates of over 1 billion

operations per second (see Ref. 5). The potential benefit of parallel-vector algorithms on

today's supercomputers is realized when multiple processors are available for use by a single

user but this availability is often limited in current multi-user environments. Addition-

ally, large comprehensive structural analysis software systems are not currently available

for massively parallel computers like the hypercube and Connection Machine computers.

Therefore, although parallelization of the solvers presented in this paper is possible, and

of interest, this paper focuses on vectorized methods for a single CPU.

DESCRIPTION OF EQUATION SOLVERS

The equation solvers described in this paper are used to solve symmetric, positive definite

linear (or linearized) systems of equations of the form given by equations (2a). The direct

solvers are Choleski methods which consist of a factorization of the matrix into triangular

factors (LLT), followed by the forward and backward solution of the resulting triangular

systems. The iterative solvers are preconditioned conjugate gradient (PCG) methods which

proceed from an initial guess, u °, for the solution of (2a) and, through an iterative process,

refine the guess to a very close approximation, u k, of the exact solution.

Variable-Band Choleski Method

The factorization is by far the most computationally intensive portion of the Choleski

method. Many algorithms have been developed for this method differing both in the order
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in which computations are carried out and in the scheme used to store the matrix coeffi-

dents. A thorough description of some implementations for vector and parallel computers

is given in Ref. 6. The factorization algorithm used for this work, hereafter referred to as

the variable-band method, is described in detail in Ref. 1 and is illustrated in Figure 1 for

a matrix with n columns.

Loopl k=lton-r-linstepsofr

Complete columns k,k + 1, ...,k + r - 1 of L

lasfrk = k+len(k)-I

Loop2 j = k + r to Iasfrk

IF Lj,k,...,Lj,k+_-i are not all zero THEN

Update column j of K using r columns of L

Loop3 i = j to lastrk

Ki,j = gi,j - Li,k * Lj,k - Li,k+l * Lj,k+l-

• .. - Li,k+,.-1 * Lj,k+r-i

EndLoop3

ENDIF

EndLoop2

EndLoopl

Finish any remaining columns of L

Figure 1. Variable-Band Choleski Factorization for n x n Matrix,

There are two key features of this method - a novel variable-band data storage scheme

and an implementation which computes multiple SAXPY operations in the innermost

computation loop (i.e, loop unrolling). Loop 3 in the algorithm accounts for most of the

computations and, by using r (typically, r = 6) SAXPY operations at a time in this loop,

very efficient use of the multiple functional units is achieved. This implementation is in

contrast to traditional skyline or profile solvers which use slower inner product operations.

In addition, memory access delays are minimized by storing the matrix L by columns

rather than by rows. This storage scheme allows the data to be accessed at the maximum

rate and leaves each column of K that is updated in loop 3 in the vector registers for r

SAXPY operations. Furthermore, the r columns of L that are computed in the outer loop

are used many times and can therefore take advantage of fast local memory caches. The

lower triangular part of K is stored by variable-length columns and during factorization

K is modified and replaced by the matrix L. Adjustments are made to the lengths of the

columns of K to account for fill-in of coefficients during factorization and to insure that

groups of r columns end in the same row. This storage scheme can require more total

storage and operations than traditional skyline Choleski solvers but most of the extra

operations are eliminated by skipping loop 3 whenever all r scalar multipliers are zero.

Since the SAXPY updates performed in loop 3 are all independent, each column update

performed in loop 2 may be performed in parallel requiring only that n/r synchronization

steps (one for each iteration of loop 1) are carried out. The synchronization step is required
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to insure that the r columns of L, which are used for the column updates in loop 3, are

fnished. This minimal synchronization cost coupled with the high degree of vectorization

for this variable-band algorithm makes very high computation rates possible on parallel-

vector computer systems.

Sparse Choleski Method

In recent years much research has been devoted towards the development of Choleski al-

gorithms which use sparse matrix storage schemes. The key feature of sparse methods

is the emphasis on significantly reducing both the number of operations and the mem-

ory storage requirements for the factorization of K. Sparse methods require sophisticated

preprocessing and usually reorder the equations to minimize the fiU-in of non-zero terms

during factorlzation. On vector computers, the time required for=this stage can be a sig-

nificant portion of the time required to actually form matrix L. In addition, the storage

schemes used for these methods generally require some form of indirect addressing which

causes significant memory access delays on vector computers. However, many advances

have been made in the development of efficient vectorized sparse Choleski solvers (see

Refs. 3,7) and these solvers must be considered for structural analysis problems. A sparse

Choleski solver, which is part of the SPARSPAK software package, has been added to

the CSM Testbed (Ref. 7). Compiler vectorization directives that were added to the

SPARSPAK factorization algorithm used in the CSM Testbed improved the computation

rate significantly.

Choose u 0

Set r° = f- Ku °

Solve Mq ° = r°

Set p0 = q0

Loop k = O, 1, ...

at, = -(r k, qk)/(pk, Kpk)

xk+l __ X k _ Otkp k

rl*÷ 1 = r k + akKp k

Solve Mq k+l = r k+l

Test for convergence

ill, = (rk+l,qk+l)/(rk,q k)

pk+l = qk+2 +flkpk

Endloop

Figure 2. Preconditioned Conjugate Gradient Method

Iterative Methods

Iterative methods are attractive for many structural analysis problems. Since they do not

require the expensive factorization of matrix K, they require less storage than sparse or

banded direct solvers. In addition, if a good approximate solution is available, iterative
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solversmay converge quickly to an accurate solution in far fewer numerical computations

than required by direct solvers. A major disadvantage of using iterative solvers for struc-

tural analysis is that the iterative method may not always converge to the solution or may

require far too many iterations. In addition, for their effective use, user interaction is often

required. The iterative methods considered in this paper are preconditioned conjugate

gradient (PCG) methods which have been found to be robust in many structural analysis

problems (see Refs. 1,8).

The basic PCG method is shown in Figure 2, with the notation (a,b) denoting the inner

product of two vectors, a and b. The major computation steps for PCG methods at

each iteration are a matrix-vector multiplication, three SAXPY operations, two inner

products and the preconditioning step, (solve Mq k+l = rk+l). One of the simplest, yet

often effective, preconditioning strategies is symmetric diagonal scaling of matrix K. This

method is often referred to as Jacobi conjugate gradient (JCG) and is implemented in

the CSM Testbed. For the JCG method, vectorizing the matrix-vector multiplication is a

primary consideration for an efficient implementation. In the CSM Testbed JCG method,

an efficient implementation is achieved by using a general sparse diagonal storage scheme

for matrix K which increases vector lengths and eliminates the need for expensive indirect

addressing.

When the convergence rate of the JCG method is slow or when the method will not converge

at all, a modified incomplete Choleski conjugate gradient (ICCG) method may be used.

The basic ICCG method performs an incomplete Choleski factorization of matrix K once

to form the preconditioning matrix M = LL T. An important modification to the basic

incomplete factorization used in the CSM Testbed ICCG method is the multiplication of

the diagonal of matrix K by 1 +a prior to factorization, where a is a small positive constant

which is increased automatically by the algorithm to insure that matrix L remains positive

definite (see Ref. 8). The preconditioning step at each iteration requires the solution of

two sparse triangular systems. The lower triangular, non-zero coefficients of K and L

are stored by columns along with row index values for each non-zero coefficient. The

incomplete factorization, matrix-vector multiplications, and sparse triangular solves are

vectorized. However, the computation rate is much lower than that of the variable-band

solver on vector computers due both to the indirect addressing required for the sparse

data storage scheme and to short vector lengths (between 20 and 40 coefficients for typical

structures matrices).

DESCRIPTION OF EXAMPLE PROBLEMS

These high-performance equation solvers are implemented within the CSM Testbed (Ref.

4) and are readily available to structural analysts. Several representative structural analysis

problems are considered herein to assess the performance of these equation solvers. While

the structural response determination is the primary goal of structural analysis, the goal

of these studies is to assess the relative performance of these equation solvers. Hence, only

a brief description of each structural problem is provided herein.



I Finite Element Model ]

5,620 Nodes

1,348 9-NOdod Quadrilateral .Elements

7///////'/'_/._f///_ I 27,353 Equations I

_//._/'//_._f-_ I 873,231 Coefficients |

_'__/_'f/'//// I 1,329 Max. Semi-Bandwidth |

L 7s7̂ vg.

Figure 3. Composite Stiffened Panel with a Cutout

Composite Stiffened Panel with a Cutout

Predicting the structural response of aerospace structures in the presence of discontinuities,

eccentricities, and damage is particularly dimcult when the structural component is built

from composite materials or is loaded into the nonlinear range. One such component is

a fiat, I-stiffened, composite panel with an elliptical cutout loaded in axial compression.

Two-dlmensional finite elements were used to model the entire structure (panel skin and

stiffeners) and near discontinuities, the finite element mesh is refined. The finite element

model, shown in Figure 3 has 5620 nodes and 1348 nine-noded quadrilateral shell elements.

For the purposes of this paper, the linear static response was determined for the case of

uniform axial compression.

C g

of FJements Through Thiclmess

Finite Element Model

4,114 Nodes

3,328 8-Noded Hexhedral Elements

arranged in 16 Layers

Stiffness Matrix

11,929 Equations

397,139 Coefficients

1,593 Max. Semi-Bandwidth

1,081 Av_. Semi-Bandwidth

Figure 4. Cross-Ply Laminate with a Hole
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Cross-Ply Composite Laminate with a Hole

Detailed stress analysis of composite structures is often required to determine accurate

through-the-thlckness (or interlamlnar) stress distributions. Some sources of interlaminar

stress gradients include free-edge effects, holes, and ply drop-offs (e.g., tapered stiffener

attachment flanges). To study these effects, three-dimensional finite element models are

frequently used. To study the performance of these solvers for three-dimensional finite

element models, the overall structural response of an 8-ply cross-ply composite laminate

with a central circular hole is considered. The finite element model, shown in Figure

4, has 4114 nodes and 3328 eight-noded hexahedral solid elements wherein two elements

through-the-thickness of each ply of composite material are used. This finite element model

is adequate for overall response characteristics but must be refined in order to determine

accurate interlaminar stress states. However, the stiffness matrix corresponding to this

finite element model is characteristic of larger discrete models, and therefore useful for

examining the relative performance of different equation solvers.

Solid Rocket Booster

Finite Element Model

9.2O5 Nodes

1,273 2-Nod¢_l Beam Elements

90 3-Nodcd Triangular Elements

9,156 4-Noded Quadrilateral Elements

Stiffness Matrix

54,870 Eqoadens
1,310,973 Cooff'tcienu

894 Max. Semi-Bandwidth

381 Avg. Semi-Bandwidth

Tang.Clevis Joint

Finite Element Model

2,d77 Nodes
148 6-Noded Solid Elements

1,256 8-Noded Solid Elements
80 2-Noded Beam Elemcvts

440 4-Noded Quadrilateral Elements

Stiffness Matrix

6,314 Equations
156,383 Cocmcients

409 Max. Semi-Bandwidth

131 Avg. Semi-Bandwidth

Figure 5. Space Shuttle Solid Rocket Booster and Tang-Clevis Joint

Space Shuttle Solid Rocket Motor Tang-Clevis Joint

The Space Shuttle Challenger accident investigation focused on the failure of a tang-clevis

joint on the right Solid Rocket Motor (SRM). Finite element structural analyses were

performed to predict both deflections and stresses in the joint under the primary pressure

loading condition. The finite element model of the redesigned SRM tang-clevis joint,



shown in Figure 5, has 2477 nodes, 148 six-noded solid elements, 1256 eight-noded solid

elements, 80 two-noded beam elements, 440 four-noded quadrilateral elements, and 142

contact points (7i nonlinear spring elements). As part of a substructure approach based

on a "unit motion" solution technique (see Ref. 9), the global system of equations must

be solved repeatedly to obtain a displacement field for the unit motion applied at each

contact point of the nonlinear spring elements (a total of 142 solutions). Each solution

represents the displacement field corresponding to a single imposed unit motion at a specific

contact point. This example problem differs from the other example problems in that even

though 142 solutions are required only a single matrix decomposition is needed. This

example problem illustrates the need for examining both the matrix decomposition stage

and the forward-reduction/back-substitution stage of direct equation solvers in assessing

the relative performance of different equation solvers.

Space Shuttle Solid Rocket Booster

A preliminary assessment of the Space Shuttle Solid Rocket Booster (SRB) global shell

response to selected prelaunch loads was presented in Reference 10. The two-dimensional

shell finite element model used in this study was translated into a format compatible with

the CSM Testbed. The finite element model, also shown in Figure 5, involves 9205 nodes

with 1273 two-noded beam elements, 90 three-noded triangular elements, and 9156 four-

noded quadrilateral elements. For the purpose of this paper, only a linear static analysis

was performed for the internal SRM pressure loading case.

Finite Element Model

(Model is ltalf of Figure Shown)

2,851 Nodes

5,189 2-Noded Rod Elereents
4,329 4-Noded Quadrilateral Elements

| 14 3-Noded Triangular Elements

Stiffness Matrix

16,146 Equations
499,505 Coefficients

594 Max. Semi-Bandwidth

:319 Avg. Semi-Bandwidth

Figure 6. High-Speed Civil Transport Aircraft ::

High-Speed Civil Transport Aircraft

Projected trends in travel to the Pacific Basin has led to a renewed national interest in the
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developmentof a high-speed civil transport (HSCT) aircraft (see Ref. 11). The design of

such a vehicle will require an integrated analysis approach involving both structures and

aerodynamics. To accelerate the development of mathematical models of various structural

configurations, a parameterized finite element model which represents the symmetric half

of the HSCT aircraft has been developed (see Ref. 12). The finite element model for the

entire ttSCT aircraft is shown in Figure 6. The symmetric half-model involves 2851 nodes,

5189 two-noded rod elements, 4329 four-noded quadrilateral elements and 114 three-noded

triangular elements. A linear static analysis is performed for the case of a wingtip loading.

NUMERICAL RESULTS

In this section numerical results are given comparing the runtimes (measured by CPU

seconds), the number of operations (measured by the total number of additions and multi-

plications), the computation rate (measured by MFLOPS), and the memory requirements

(measured by the number of 64-bit words required for matrix storage) for the direct and it-

erative solvers. A Convex C220 minisupercomputer was used for three analyses (see Table

1) and the NASA Langley CRA¥-2 was used for three analyses (see Table 2). All analyses

were performed using the CSM Testbed to generate the finite element models, solve the

linear systems, and postprocess the output data. Times shown for the sparse solver, SPK,

are given with and without the overhead costs associated with the use of the SPARSPAK

software. Since most sparse solvers require extensive pre-processing which includes the

input of the non-zero structure of the matrix, reordering of the equations, and the input

of the actual matrix coefficients, this time is part of the total solution time. The data

presented in Tables 1-3 also include normalized values which make comparisons between
the solvers more clear.

The results in Tables 1 and 2 show that both the number of computations and the rate

at which the computations can be performed must be considered to determine the fastest

solver for a given problem. The variable-band solver has the highest computation rate for

all problems considered herein and also has the lowest CPU time for most of the problems.

This solver is the most effective at exploiting vector computer architectures, particularly on

CRAY-2 computers, where rates as high as 269 MFLOPS were obtained. However, on all

problems, the variable-band solver requires the most memory of all the solvers compared

and always requires more operations than the sparse solver.

The effectiveness of the sparse solver in reducing the number of operations relative to the

variable-band solver varied widely for the problems considered. For the composite stiffened

panel problem (shown in Table 1), the sparse solver required over 17 times fewer operations

than the banded solver. However, on the remaining problems the sparse solver required

typically less than 2 times fewer operations than the banded solver. The computation rate

for the sparse solver is much lower than the variable-band solver, although much faster

rates have been reported for sparse solvers which use special machine coded routines. For

example, Ref.3 reports a time of 23 seconds for the factorization only, of the matrix used

in the Space Shuttle SRB problem on a CRAY Y-MP. However, this solver is not currently

available for other computers such as the CONVEX C220 and relies on special machine-

coded routines to improve the computation rate, while the variable-band solver uses a

11



Table 1. Comparison of Equation Solvers for Example Problems

Runs Made on Convex C220 Computer, normalized data in [ ]

Equation Time Operations Rate Memory

Solver (see) (adds/multiplles) (MFLOPS) (64-bit Words)

Stiffened Panel with Cutout, 9-Noded Shell Elements, 27,353 Equations

873,231 Coei_cients, Max. Semi-Bandwidth--I,329, Avg. Semi-Bandwidth:787

BAND

SPK: f_ctor/solve

with overhead

icca (1,041) 7=.067

436.8 [1.9]
9T.3[.4]

231.7 [I.0]
1295.2 [5.6]

8,701,085,825[17.5]
496,998,128[ 1.0]
496,998,128[ 1.0]

7,709,129,853[15.5]

20.0 [9.5]

5.1 [2.4]

2.1 [1.0]
6.0 [2.9]

21,527,763 [ 8.1]

3,684,396 [1.4]

3,684,396 [ 1.4]

2,647,046 [ 1.0]

Cross-Ply Composite Laminate with a Hole, 8-Noded Brick Elements, 11,929 Equations

397,139 Coefficients, Max. Semi-Bandwidth=l,593, Avg. Semi-Bandwidth:l,081

BAND

SPK: f_ctor/solve

with overhead

ICCG (948) 7=.02

506.3 [1.0]
1085.7 [2.2]
1192.2[2.4]
488.2 [1.0]

13,150,259,538 [ 4.2]

7,832,183,056 [ 2.5]

7,832,183,056 [ 2.5]

3,137,874,415 [ 1.0]

26.0 [3.9]
7.2 [1.1]
6.6 [1.0]
6.6 [1.0]

12,901,825 [10.7]

7,518,911 [ 6.2]

7,518,911[ 6.2]

1,203,346 [ 1.0]

Space Shuttle SRM Joint with 142 R.H.S. Vectors, Mixed Element Types, 6,314 Equations

156,383 Coefficients, Max. Semi-Bandwidth--409, Avg. Semi-Bandwidth=131

BAND

SPK: factor/solve

with overhead

ICCG (14,253) ot : 0

30.2 [ 1.0]
57.8 [ 1.9]
76.4[ 2.5]

3578.7 [118.5]

397,063,697 [ 1.3]

310,510,946 [ 1.0]

310,510,946 [ 1.0]

18,918,520,552 [60.9]

13.1 [3.2]
5.4 [1.3]
4.1 [1.0]
5.3 [1.3]

830,505 [1.7]

669,731 [1.5]
669,731 [1.5]

475,463 [1.0]

BAND-

SPK -

ICCG -

Choleski, variable-band matrix storage, loop unrolling to level 6,

uses zero-checking option, CRAY-2 version exploits its local memory

Choleski, sparse matrix storage, SPARSPAK-A with vectorization directives added,

with overhead time (includes time to input non-zero structure, reorder equations

and input non-zero coefficients)

Incomplete Choleski Preconditioned Conjugate Gradient, sparse matrix storage,

diagonal multiplied by 1 + 7 prior to incomplete decomposition,

number of iterations in parenthesis

standard FORTRAN routine. Higher computation rates for sparse solvers relative to the

varlable-band solver would make them faster for some of the problems in this study.

The performance of the iterative solvers on both computers was limited by both a low

computation rate and a high operation count (due to slow convergence rates) for most

of the example problems. The solution was considered converged if the inner product in

Figure 2 was less than a specified tolerance: (r k+l,qk+l) < 10-10 × n. For the SRM

joint problem (see Table 1), each of the 142 solutions computed by the ICCG iterative

solver required approximately 100 iterations and very little benefit was gained in this

case by using the previous solution as an initial guess. Using the direct solvers, only one

factorization was required, and 142 right hand side vectors were solved. The solution time
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Table 2. Comparison of Equation Solvers for Example Problems

Runs Made on NASA-Langley CRAY-2 Computer, normalized data in [ ]

Equation Time Operations Rate Memory

Solver (sec) (adds/multiplies) (MFLOP_) (64-bit Words)

Composite Cross-Ply Laminate with Hole, 8-Noded Brick Elements, 11,929 Equations

397,139 Coefficients, Max. Semi-Bandwidth=l,593, Avg. Semi-Bandwidth=l,081

BAND

SPK: factor/solve

with overhead

ICCG (950)7 =.02
JCG (2,864)

48.9 [I.0]
223.5[4.6]
250.2 [5.1]
260.5 [5.3]
223.8 [4.6]

13,150,259,538 [4.2]

7,832,183,056 [2.5]

7,832,183,056 [2.5]

3,137,874,415 [I.0]

12,843,778,146 [4.1]

269 [22.4]
35 [ 2.9]
31 [ 2.6]
12 [ 1.0]
57 [ 4.8]

12,901,825 [11.2]

7,518,911 [ 6.5]

7,518,911 [ 6.5]

1,203,346 [ 1.0]

1,149,180[ 1.0]

Space Shuttle Solid Rocket Booster, Mixed Element Types, 54,870 Equations

1,310,973 Coefficients, Max. Semi-Bandwidth=894, Avg. Semi-Bandwidth=381

BAND

SPK: factor/solve

with overhead

ICCG (1,426) _' = .14

JcG (6,758)

34.6 [ 1.0]

162.8 [ 4.7]

218.3 [ 6.3]

1534.0 [44.3]

968.0 [28.0]

7,582,850,299 [ 1.5]

4,942,898,728 [ 1.0]

4,942,898,728 [ 1.0]

16,110,861,248 [ 3.3]

73,853,772,956 [14.9]

219 [19.9]
30 [ 2.7]
23 [ 2.1]
11 [ 1.0]
76 [ 6.9]

20,925,813 [8.1]

13,033,299 [5.0]

13,033,299 [5.0]

3,987,789 [I.5]

2,594,332 [I.0]

High-Speed Civil Transport A|rcraft, Mixed Element Types, 16,146 Equations

499,505 Coefficients, Max. Semi-Bandwidth:594, Avg. Semi-Bandwidth=319

BAND 6.8 [ 1.0]

SPK: factor/solve 37.1 [ 5.5]

with overhead 62.6 [ 9.2]

ICCG (1,124) 7 =.048 395.7 [58.2]

JCG (8,310) 448.7 [66.0]

1,362,079,199 [ 1.3]

1,083,225,624 [ 1.0]

1,083,225,624 [ 1.0]

4,726,562,076 [ 4.4]

31,750,850,466 [29.3]

20o [16.7]
29 [ 2.4]
17 [ 1.4]
12 [ 1.0]
71 [ 5.9]

5,160,591 [5.5]

3,360,105 [3.6]

3,360,105 [3.6]

1,514,661 [1.6]

936,913 [1.0]

JCG - Jacobi Preconditioned Conjugate Gradient (Diagonal scaling),

diagonal storage of matrix, number of iterations in parenthesis

for both direct solvers would be considerably higher if the same problem required repeated

factorizations of the input matrix, while the iterative solution time would remain about

the same. A computation rate of over 70 MFLOPS on the GRAY-2 for the JCG iterative

method (see Table 2) was achieved by the use of diagonal storage of the system matrix.

However, the number of iterations required for the $CG method was too high for the

problems considered to make it competitive with the direct solvers.

One factor that significantly affects the convergence rate of iterative solvers for structural

analysis problems is dement aspect ratio. Table 3 demonstrates this effect for a prismatic

solid, with physical dimensions I x I × Iz, modeled using 8-noded brick elements. The solid

is constrained at the four corners and uniformly loaded along one face. In this example,

the aspect ratio is varied by changing the height (or thickness, Iz) of the prismatic solid.

For the model with an element aspect ratio of 1, the JCG method was nearly three times

faster than the variable-band solver. However, as the dement aspect ratio is increased, the
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number of iterations increases dramatically and the iterative solver is no longer competitive

with the variable-band solver. A similar effect has been observed for shell elements where

the element thickness enters the stiffness matrix through the constitutive relations. The

number of iterations required for a given convergence tolerance decreases dramatically as

the ratio of element planar dimension to the thickness approaches one. The ICCG method

requires increasingly fewer iterations than the JCG method as the element aspect ratio

increases, but the computation rate is also much slower. This example suggests that the

iterative solvers can be expected to perform most efficiently for problems with very fine

meshes where aspect ratios are closer to unity.

Table 3. Effect of Element Aspect Ratio on Performance of Iterative Solvers

Runs Made on NASA-Langley CRAY-2 Computer, Normalized Data in [ ]

Prismatic Solid with 10 x 10 × 10 Nodes, Physical Dimensions l × I × Iz

8-Noded Brick Elements, 2,988 Equations, 99,661 Coefficients

Max. Semi-Bandwidth=336, Avg. Semi-Bandwidth=314

Equation Iterations Time Operations Rate

Solver (sec) (adds/multiplies) (MFLOPS)

BAND n/a 1.47 [ 4.0] 311,461,433 [10.0] 212 [17.7]

JCG (I/lz = 1) 52 [ 1.3] .37 [ 1.0] 31,121,268 [ 1.0] 84 [ 7.0]

JCG (l/lz = 10) 449 [11.0] 3.12 [ 8.4] 262,244,050 [ 8.4] 84 [ 7.0]

JCG (l/Iz = 20) 1,016 [24.8] 6.99 [18.9] 592,292,340 [19.0] 84 [ 7.0]

ICCG (1/Iz -- 1) 41 [ 1.0] 3.43 [ 9.3] 40,282,578 [ 1.3] 12 [1.0]

ICCG (1/Iz = 10) 123 [ 3.0] 9.57 [25.9] 99,308,664 [ 3.2] 12 [1.0]

ICco (l/Iz = 20) 382 [ 9.3] 26.65 [26.7] 320,010,996 [10.3] 12 [1.0]

CONCLUDING REMARKS

The availability of a variety of vectorized direct and iterative equation solvers within a com-

mon large-scale finite element software system leads to new research areas and expanded

capabilities in finite dement analysis. Equation solution times for problems requiring

several billion operations can now be performed in seconds on today's high-performance

computers. The use of both direct and iterative equation solvers to solve representative

structural analysis problems shows that the relative performance of the solvers depends

both on the amount of computations as well as the rate at which the operations can be

carried out on a given computer. The variable-band Choleski solver is very fast for many

structural analysis problems. Sparse solvers are most attractive for models composed of

higher order finite dements, where they can benefit most from a greatly reduced operation

count relative to the variable-band solvers. Iterative methods require much less memory

than the direct solvers, but their effective use depends upon a fast convergence rate. The

convergence rate is best for elements with low aspect ratios and may also be improved if a

good initial guess is available. The effective use of high-performance computers in solving

challenging structural analysis problems requires interaction between structural engineers
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and numerical analysts in order to match the characteristics of a given problem with the

capabilities of a variety of equation solvers.
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